organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(*E*)-(4-Diethylamino-2-hydroxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1*H*pyrazol-3(2*H*)-one

K. Manvizhi,^a G. Chakkaravarthi,^b* G. Anbalagan^c and G. Rajagopal^d*

^aDepartment of Chemistry, Anand Institute of Higher Technology, Kazhipattur, Chennai 603 103, India, ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^dDepartment of Chemistry, Government Arts College, Melur 625 106, India

Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Received 15 August 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.049; wR factor = 0.126; data-to-parameter ratio = 16.1.

In the title compound, $C_{22}H_{26}N_4O_2$, the phenyl ring and hydroxybenzene group are twisted with respect to the central pyrazolone ring, making dihedral angles of 54.05 (5) and 21.80 (6)°, respectively. One of the ethyl groups is disordered over two positions with site occupancies of 0.872 (6) and 0.128 (6). The molecular structure features short intramolecular O-H···N and C-H···O contacts. The crystal packing exhibits weak intermolecular C-H···O and C-H··· π interactions.

Related literature

For biological activities of pyrazolone derivatives, see: Gursoy *et al.* (2000); Ragavan *et al.* (2009). For related structures, see: Wang *et al.* (2007); Zhu *et al.* (2008).

Experimental

Crystal data C₂₂H₂₆N₄O₂

 $M_r=378.47$

Monoclinic, C2/c	
a = 17.2794 (6) Å	
b = 7.1853 (3) Å	
c = 32.9711 (12) Å	
$\beta = 101.652 \ (1)^{\circ}$	
V = 4009.3 (3) Å ³	
. ,	

Data collection

Bruker Kappa APEXII	21210 measured reflections
diffractometer	4398 independent reflections
Absorption correction: multi-scan	3293 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.029$
$T_{\min} = 0.977, \ T_{\max} = 0.984$	

Z = 8

Mo $K\alpha$ radiation

 $0.28 \times 0.24 \times 0.20 \text{ mm}$

 $\mu = 0.08 \text{ mm}^-$

T = 295 K

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.049 & 3 \text{ restraints} \\ wR(F^2) = 0.126 & \text{H-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 0.33 \text{ e } \text{\AA}^{-3} \\ 4398 \text{ reflections} & \Delta\rho_{\min} = -0.18 \text{ e } \text{\AA}^{-3} \\ 274 \text{ parameters} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

 $\mathit{Cg1}$ and $\mathit{Cg2}$ are the centroids of the N1/N2/C7/C8/C9 and C1–C6 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2A\cdots N3$	0.82	1.88	2.6127 (17)	148
C12−H12···O1	0.93	2.33	3.004 (2)	130
$C2-H2 \cdot \cdot \cdot O2^{i}$	0.93	2.48	3.267 (2)	142
$C11 - H11B \cdots O1^{ii}$	0.96	2.36	3.309 (2)	172
$C4-H4\cdots Cg2^{iii}$	0.93	2.89	3.746 (2)	153
$C6-H6\cdots Cg1^{iv}$	0.93	2.78	3.559 (2)	142
Symmetry codes: (i	$x - \frac{1}{2}, y + \frac{1}{2}$, z; (ii) x,	y - 1, z; (iii) $x,$	$-y, z + \frac{1}{2};$ (iv)

 $-x + 1, y, -z + \frac{3}{2}.$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2400).

References

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Gursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). *Eur. J. Med. Chem.* **35**, 359–364.

Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wang, L.-G., Zhang, C.-N., Yan, G.-B., Zheng, Y.-F. & Yang, M.-H. (2007). Acta Cryst. E63, o1245–o1246.

Zhu, Z.-F., Shen, X.-H. & Tang, X.-G. (2008). Acta Cryst. E64, o1965-o1966.

Acta Cryst. (2011). E67, o2692 [doi:10.1107/S1600536811037615]

$\label{eq:2-1} 4-[(E)-(4-Diethylamino-2-hydroxybenzylidene) amino]-1, 5-dimethyl-2-phenyl-1 H-pyrazol-3(2H)-one$

K. Manvizhi, G. Chakkaravarthi, G. Anbalagan and G. Rajagopal

Comment

Pyrazolone derivatives exhibit antipyretic, anti-inflammatory, antibacterial and antifungal (Gursoy *et al.*, 2000; Ragavan *et al.*, 2009) activities. The geometric parameters of the title compound, (Fig. 1) agree well with the reported similar structures (Wang *et al.*, 2007; Zhu *et al.*, 2008).

The phenyl ring (C1–C6) and hydroxybenzene group (C13–C18) are twisted with respect to the pyrazolone ring (N1/N2/C7/C8/C9), making the dihedral angles of and 54.05 (5) and 21.80 (6)°, respectively. One of the ethyl groups is disordered over two positions with site occupancies of 0.872 (6) and 0.128 (6). The molecular structure is stabilized by weak intramolecular O—H…N and C—H…O interactions and the crystal packing exhibits weak intermolecular C—H…O and C—H…T interactions (Table 1 & Fig. 2).

Experimental

A solution of 1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-one (0.203 g, 1 mmol) in ethanol (5 ml) was added to a solution of 4-diethylamino-2-hydroxybenzaldehyde (0.193 g, 1 mmol) in ethanol (5 ml). The reaction mixture was stirred for 2 h at room temperature then heated to reflux for 2 h and kept at 273 K for 4h. The characteristic pale-green precipitate obtained was filtered and recrystallized by dissolving in methanol (m.p. 438 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement

The site occupancy factors for disordered C atoms of one of the ethyl groups refined at: C21 sof = 0.872 (6), C22 sof = 0.872 (6), C21A sof = 0.128 (6), C22A sof = 0.128 (6). The bond distances N4—C21A and C21A—C22A were restrained to 1.48 (1) Å and 1.54 (1) Å, respectively and the non-bonding distance N4—C22A was restrained to 2.34 (1) Å. All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and O–H = 0.82 Å and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$ or $1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The molecular structure of the title compound and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

4-[(E)-(4-Diethylamino-2-hydroxybenzylidene)amino]-1,5-dimethyl- 2-phenyl-1H-pyrazol-3(2H)-one

F(000) = 1616

 $\theta = 2.4 - 27.1^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K

Block, colourless

 $0.28 \times 0.24 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.254 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 22393 reflections

Crystal data

C₂₂H₂₆N₄O₂ $M_r = 378.47$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.2794 (6) Å b = 7.1853 (3) Å c = 32.9711 (12) Å $\beta = 101.652$ (1)° V = 4009.3 (3) Å³ Z = 8

Data collection

4398 independent reflections
3293 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.029$
$\theta_{\text{max}} = 27.1^\circ, \ \theta_{\text{min}} = 2.4^\circ$
$h = -18 \rightarrow 22$
$k = -8 \rightarrow 9$
$l = -42 \rightarrow 41$

Refinement

efinement on F^2	Primary atom site location: structure-invariant direct methods
east-squares matrix: full	Secondary atom site location: difference Fourier map
$[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$PR(F^2) = 0.126$	H-atom parameters constrained
= 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.052P)^{2} + 2.4774P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
398 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
74 parameters	$\Delta \rho_{\text{max}} = 0.33 \text{ e} \text{ Å}^{-3}$
restraints	$\Delta \rho_{\rm min} = -0.18 \ e \ {\rm \AA}^{-3}$
 <i>R</i>(<i>F²</i>) = 0.126 = 1.03 398 reflections 74 parameters restraints 	w = $1/[\sigma^2(F_o^2) + (0.052P)^2 + 2.4774P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.45300 (7)	0.35172 (17)	0.64038 (4)	0.0550 (3)	
O2	0.70119 (7)	-0.04760 (16)	0.59423 (4)	0.0509 (3)	
H2A	0.6621	-0.0508	0.6048	0.076*	
N1	0.41671 (8)	0.09879 (18)	0.67543 (4)	0.0421 (3)	
N2	0.45087 (8)	-0.07360 (18)	0.68900 (4)	0.0427 (3)	
N3	0.58759 (8)	0.08183 (19)	0.62786 (4)	0.0415 (3)	
N4	0.87010 (11)	0.3824 (2)	0.54493 (6)	0.0730 (5)	
C1	0.37186 (9)	0.1964 (2)	0.70049 (5)	0.0392 (4)	
C2	0.31096 (10)	0.3083 (2)	0.68109 (5)	0.0473 (4)	
H2	0.2973	0.3121	0.6523	0.057*	
C3	0.27040 (10)	0.4148 (3)	0.70461 (6)	0.0529 (4)	
Н3	0.2295	0.4916	0.6916	0.063*	
C4	0.28989 (10)	0.4086 (3)	0.74715 (6)	0.0511 (4)	
H4	0.2628	0.4818	0.7629	0.061*	
C5	0.34974 (10)	0.2935 (3)	0.76613 (5)	0.0505 (4)	
H5	0.3625	0.2877	0.7949	0.061*	
C6	0.39114 (10)	0.1864 (2)	0.74313 (5)	0.0456 (4)	
H6	0.4315	0.1085	0.7562	0.055*	
C7	0.51277 (9)	-0.0988 (2)	0.66911 (5)	0.0403 (4)	
C8	0.52434 (9)	0.0572 (2)	0.64794 (5)	0.0396 (4)	
C9	0.46392 (9)	0.1904 (2)	0.65229 (5)	0.0404 (4)	
C10	0.39353 (12)	-0.2229 (3)	0.69031 (7)	0.0615 (5)	
H10A	0.3620	-0.2414	0.6631	0.092*	
H10B	0.3600	-0.1891	0.7090	0.092*	
H10C	0.4211	-0.3359	0.6996	0.092*	
C11	0.55860 (11)	-0.2746 (2)	0.67399 (6)	0.0568 (5)	
H11A	0.6023	-0.2638	0.6602	0.085*	
H11B	0.5251	-0.3753	0.6621	0.085*	
H11C	0.5781	-0.2985	0.7029	0.085*	
C12	0.60614 (10)	0.2457 (2)	0.61670 (5)	0.0443 (4)	
H12	0.5753	0.3467	0.6212	0.053*	
C13	0.67255 (10)	0.2769 (2)	0.59774 (5)	0.0423 (4)	
C14	0.71893 (10)	0.1312 (2)	0.58723 (5)	0.0413 (4)	
C15	0.78306 (11)	0.1657 (2)	0.56953 (6)	0.0518 (4)	
H15	0.8120	0.0662	0.5624	0.062*	
C16	0.80566 (11)	0.3479 (3)	0.56208 (6)	0.0534 (5)	
C17	0.75989 (12)	0.4944 (3)	0.57316 (6)	0.0572 (5)	
H17	0.7736	0.6170	0.5690	0.069*	
C18	0.69576 (11)	0.4578 (2)	0.58988 (6)	0.0544 (5)	
H18	0.6660	0.5572	0.5964	0.065*	
C19	0.90916 (13)	0.2322 (3)	0.52606 (7)	0.0717 (6)	
H19A	0.9297	0.2818	0.5030	0.086*	
H19B	0.8708	0.1365	0.5155	0.086*	
C20	0.97484 (16)	0.1490 (4)	0.55681 (9)	0.0939 (8)	
H20A	1.0114	0.2448	0.5684	0.141*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20B	1.0016	0.0576	0.5434	0.141*	
H20C	0.9539	0.0908	0.5785	0.141*	
C21	0.90416 (14)	0.5704 (4)	0.54439 (8)	0.0585 (8)	0.872 (6)
H21A	0.9610	0.5611	0.5474	0.070*	0.872 (6)
H21B	0.8932	0.6419	0.5675	0.070*	0.872 (6)
C22	0.87019 (19)	0.6673 (5)	0.50495 (9)	0.0881 (11)	0.872 (6)
H22A	0.8930	0.7892	0.5051	0.132*	0.872 (6)
H22B	0.8140	0.6781	0.5022	0.132*	0.872 (6)
H22C	0.8816	0.5972	0.4821	0.132*	0.872 (6)
C21A	0.8615 (8)	0.5403 (16)	0.5143 (3)	0.051 (5)	0.128 (6)
H21C	0.8079	0.5875	0.5079	0.062*	0.128 (6)
H21D	0.8775	0.5039	0.4889	0.062*	0.128 (6)
C22A	0.9190 (13)	0.6828 (18)	0.5389 (6)	0.092 (8)	0.128 (6)
H22D	0.9194	0.7934	0.5226	0.139*	0.128 (6)
H22E	0.9712	0.6306	0.5453	0.139*	0.128 (6)
H22F	0.9022	0.7133	0.5641	0.139*	0.128 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0649 (8)	0.0415 (7)	0.0644 (8)	0.0090 (6)	0.0270 (6)	0.0139 (6)
02	0.0591 (7)	0.0380 (6)	0.0599 (8)	0.0027 (5)	0.0222 (6)	0.0033 (5)
N1	0.0471 (7)	0.0356 (7)	0.0455 (8)	0.0029 (6)	0.0140 (6)	0.0042 (6)
N2	0.0473 (8)	0.0321 (7)	0.0508 (8)	-0.0009 (6)	0.0152 (6)	0.0029 (6)
N3	0.0456 (7)	0.0420 (8)	0.0383 (7)	-0.0003 (6)	0.0116 (6)	-0.0009 (6)
N4	0.0753 (11)	0.0561 (10)	0.1027 (14)	0.0042 (9)	0.0540 (11)	0.0114 (10)
C1	0.0371 (8)	0.0373 (8)	0.0447 (9)	-0.0034 (6)	0.0117 (7)	0.0018 (7)
C2	0.0460 (9)	0.0501 (10)	0.0442 (9)	0.0038 (8)	0.0057 (7)	0.0050 (8)
C3	0.0444 (9)	0.0506 (10)	0.0637 (12)	0.0102 (8)	0.0111 (8)	0.0072 (9)
C4	0.0493 (10)	0.0489 (10)	0.0599 (11)	0.0029 (8)	0.0220 (8)	-0.0030 (8)
C5	0.0510 (10)	0.0596 (11)	0.0423 (9)	0.0001 (9)	0.0127 (8)	0.0000 (8)
C6	0.0403 (8)	0.0505 (10)	0.0463 (9)	0.0049 (7)	0.0094 (7)	0.0075 (8)
C7	0.0443 (9)	0.0355 (8)	0.0408 (8)	-0.0031 (7)	0.0079 (7)	-0.0049 (7)
C8	0.0443 (8)	0.0380 (8)	0.0367 (8)	-0.0015 (7)	0.0089 (7)	-0.0033 (7)
C9	0.0456 (9)	0.0374 (9)	0.0391 (8)	-0.0009 (7)	0.0107 (7)	0.0025 (7)
C10	0.0621 (11)	0.0438 (10)	0.0835 (14)	-0.0112 (9)	0.0260 (10)	0.0030 (10)
C11	0.0640 (11)	0.0408 (10)	0.0684 (12)	0.0062 (8)	0.0200 (10)	0.0021 (9)
C12	0.0506 (9)	0.0395 (9)	0.0453 (9)	0.0040 (7)	0.0155 (8)	-0.0003 (7)
C13	0.0485 (9)	0.0392 (9)	0.0416 (9)	0.0032 (7)	0.0146 (7)	0.0028 (7)
C14	0.0499 (9)	0.0366 (9)	0.0373 (8)	0.0019 (7)	0.0086 (7)	0.0034 (7)
C15	0.0548 (10)	0.0448 (10)	0.0614 (11)	0.0085 (8)	0.0251 (9)	0.0027 (8)
C16	0.0563 (10)	0.0502 (10)	0.0591 (11)	0.0029 (8)	0.0244 (9)	0.0083 (9)
C17	0.0679 (12)	0.0398 (10)	0.0710 (12)	-0.0001 (9)	0.0310 (10)	0.0076 (9)
C18	0.0639 (11)	0.0381 (9)	0.0681 (12)	0.0055 (8)	0.0298 (10)	0.0035 (8)
C19	0.0736 (14)	0.0761 (15)	0.0746 (14)	0.0043 (12)	0.0364 (12)	0.0106 (12)
C20	0.0863 (17)	0.098 (2)	0.102 (2)	0.0101 (15)	0.0298 (15)	0.0236 (16)
C21	0.0556 (14)	0.0675 (18)	0.0537 (15)	-0.0115 (12)	0.0141 (12)	0.0029 (13)
C22	0.103 (2)	0.093 (3)	0.0670 (18)	-0.0082 (19)	0.0142 (17)	0.0196 (17)

C21A C22A	0.066 (10) 0.109 (17)	0.051 (10) 0.061 (14)	0.045 (9) 0.105 (19)	-0.005 (7) -0.019 (12)	0.028 (8) 0.016 (14)	0.015 (7) -0.003 (13)
Geometric parai	meters (Å, °)					
01		1 2260 (19)	C11-	-H11B	0.9	600
02-C14		1 3514 (19)	C11-	-H11C	0.9	600
02 - H2A		0.8200	C12-		1.4	31 (2)
N1-C9		1 390 (2)	C12-	—H12	0.9	300
N1—N2		1.396(2) 1.4058(18)	C13-		1.4	00(2)
N1—C1		1 426 (2)	C13-		1.1	00(2)
N2-C7		1.120(2) 1.375(2)	C14-		1.1	75 (2)
N2		1.373(2) 1.467(2)	C15-		1.5	$\frac{1}{12}$ (2)
N2 C10		1.107 (2)	C15-	—H15	0.9	300
N3-C8		1 399 (2)	C16-		1.4	08(3)
N9 C0 N4—C16		1 369 (2)	C17-		1.1	59 (2)
N4-C21		1.505(2) 1.475(3)	C17-	—H17	0.9	300
N4-C19		1.475 (3)	C18-	H18	0.9	300
N4-C21A		1.506 (9)	C19-		1.4	86 (3)
C1-C2		1 375 (2)	C19-	—H19A	0.9	700
C1 - C6		1.375(2) 1.380(2)	C19-	H19R	0.9	700
$C^{2}-C^{3}$		1.378 (2)	C20-	_H20A	0.9	600
C2—H2		0.9300	C20-	-H20R	0.9	600
$C_2 - C_4$		1 375 (3)	C20-	-H20C	0.9	600
С3—Н3		0.9300	C21-	-C22	1.4	87 (4)
C4 - C5		1 372 (2)	C21-	_H21A	0.9	700
C4—H4		0.9300	C21-	_H21R	0.9	700
C5-C6		1 378 (2)	C22-	_H22A	0.9	600
С5—Н5		0.9300	C22-	-H22B	0.9	600
С6—Н6		0.9300	C22-	-H22C	0.9	600
C7—C8		1 357 (2)	C214	—C22A	1.5	38 (10)
C7—C11		1.557(2) 1 482(2)	C214	A—H21C	0.9	700
C8—C9		1 445 (2)	C214	—H21D	0.9	700
C10—H10A		0.9600	C22/	—H22D	0.9	600
C10—H10B		0.9600	C22A	A—H22E	0.9	600
C10—H10C		0.9600	C22A	A—H22F	0.9	600
C11—H11A		0.9600				
C14—O2—H2A		109.5	C18-		116	60 (15)
C9-N1-N2		109.69 (12)	C18-	-C13-C12	120	76(15)
C9-N1-C1		122.18 (13)	C14-	-C13-C12	120	2 61 (15)
N2-N1-C1		119 43 (12)	02-	-C14C15	118	29 (15)
C7 - N2 - N1		106.34(12)	02-	-C14—C13	120	(10)
C7 - N2 - C10		120.86 (14)	C15-		121	
N1 - N2 - C10		114.28 (13)	C14-		121	
C12—N3—C8		120.80 (14)	C14-		119	0.3
C16—N4—C21		122.02 (17)	C16-		119	0.3
C16—N4—C19		121.42 (17)	N4—	-C16—C15	121	.31 (17)
C21—N4—C19		116.56 (16)	N4—	-C16—C17	121	
C16—N4—C21A	L	115.8 (6)	C15-		117	.47 (16)

C19—N4—C21A	105.1 (5)	C18—C17—C16	120.49 (17)
C2—C1—C6	120.60 (15)	С18—С17—Н17	119.8
C2—C1—N1	118.19 (14)	С16—С17—Н17	119.8
C6—C1—N1	121.13 (14)	C17—C18—C13	122.82 (16)
C1—C2—C3	119.43 (16)	C17—C18—H18	118.6
C1—C2—H2	120.3	C13—C18—H18	118.6
С3—С2—Н2	120.3	N4—C19—C20	111.0 (2)
C4—C3—C2	120.56 (16)	N4—C19—H19A	109.4
С4—С3—Н3	119.7	С20—С19—Н19А	109.4
С2—С3—Н3	119.7	N4—C19—H19B	109.4
C5—C4—C3	119.43 (16)	С20—С19—Н19В	109.4
С5—С4—Н4	120.3	H19A—C19—H19B	108.0
C3—C4—H4	120.3	С19—С20—Н20А	109.5
C4—C5—C6	120.85 (17)	С19—С20—Н20В	109.5
C4—C5—H5	119.6	H20A-C20-H20B	109.5
С6—С5—Н5	119.6	С19—С20—Н20С	109.5
C5—C6—C1	119.11 (16)	H20A-C20-H20C	109.5
С5—С6—Н6	120.4	H20B—C20—H20C	109.5
С1—С6—Н6	120.4	N4—C21—C22	110.6 (2)
C8—C7—N2	110.26 (14)	N4—C21—H21A	109.5
C8—C7—C11	128.98 (15)	C22—C21—H21A	109.5
N2—C7—C11	120.70 (14)	N4—C21—H21B	109.5
C7—C8—N3	123.96 (15)	C22—C21—H21B	109.5
C7—C8—C9	108.17 (14)	H21A—C21—H21B	108.1
N3—C8—C9	127.78 (14)	C21—C22—H22A	109.5
O1—C9—N1	123.66 (15)	C21—C22—H22B	109.5
O1—C9—C8	131.45 (15)	H22A—C22—H22B	109.5
N1—C9—C8	104.87 (13)	C21—C22—H22C	109.5
N2-C10-H10A	109.5	H22A—C22—H22C	109.5
N2—C10—H10B	109.5	H22B—C22—H22C	109.5
H10A—C10—H10B	109.5	N4—C21A—C22A	100.5 (8)
N2—C10—H10C	109.5	N4—C21A—H21C	111.7
H10A—C10—H10C	109.5	C22A—C21A—H21C	111.7
H10B—C10—H10C	109.5	N4—C21A—H21D	111.7
С7—С11—Н11А	109.5	C22A—C21A—H21D	111.7
С7—С11—Н11В	109.5	H21C—C21A—H21D	109.4
H11A—C11—H11B	109.5	C21A—C22A—H22D	109.5
С7—С11—Н11С	109.5	C21A—C22A—H22E	109.5
H11A—C11—H11C	109.5	H22D—C22A—H22E	109.5
H11B—C11—H11C	109.5	C21A—C22A—H22F	109.5
N3—C12—C13	122.26 (15)	H22D—C22A—H22F	109.5
N3—C12—H12	118.9	H22E—C22A—H22F	109.5
C13—C12—H12	118.9		
C9—N1—N2—C7	-8.57 (17)	N3—C8—C9—N1	-178.70 (15)
C1—N1—N2—C7	-156.94 (13)	C8—N3—C12—C13	177.22 (15)
C9—N1—N2—C10	-144.52 (15)	N3—C12—C13—C18	-173.45 (17)
C1—N1—N2—C10	67.11 (19)	N3—C12—C13—C14	4.6 (3)
C9—N1—C1—C2	65.9 (2)	C18—C13—C14—O2	179.23 (16)
N2—N1—C1—C2	-149.84 (15)	C12—C13—C14—O2	1.1 (2)

C9—N1—C1—C6	-111.09 (18)	C18—C13—C14—C15	-1.0 (2)
N2—N1—C1—C6	33.2 (2)	C12-C13-C14-C15	-179.12 (17)
C6—C1—C2—C3	1.7 (3)	O2-C14-C15-C16	-178.86 (17)
N1—C1—C2—C3	-175.26 (15)	C13-C14-C15-C16	1.4 (3)
C1—C2—C3—C4	-0.6 (3)	C21—N4—C16—C15	-167.7 (2)
C2—C3—C4—C5	-0.7 (3)	C19—N4—C16—C15	12.2 (3)
C3—C4—C5—C6	0.9 (3)	C21A—N4—C16—C15	141.5 (6)
C4—C5—C6—C1	0.2 (3)	C21—N4—C16—C17	11.9 (3)
C2-C1-C6-C5	-1.5 (2)	C19—N4—C16—C17	-168.2 (2)
N1—C1—C6—C5	175.37 (15)	C21A—N4—C16—C17	-39.0 (6)
N1—N2—C7—C8	7.11 (18)	C14-C15-C16-N4	179.18 (18)
C10—N2—C7—C8	139.51 (16)	C14—C15—C16—C17	-0.4 (3)
N1—N2—C7—C11	-175.49 (14)	N4—C16—C17—C18	179.5 (2)
C10-N2-C7-C11	-43.1 (2)	C15-C16-C17-C18	-0.9 (3)
N2—C7—C8—N3	173.56 (14)	C16-C17-C18-C13	1.3 (3)
C11—C7—C8—N3	-3.6 (3)	C14—C13—C18—C17	-0.3 (3)
N2—C7—C8—C9	-3.09 (18)	C12-C13-C18-C17	177.84 (18)
С11—С7—С8—С9	179.78 (16)	C16—N4—C19—C20	-92.3 (3)
C12—N3—C8—C7	-163.62 (16)	C21—N4—C19—C20	87.6 (2)
C12—N3—C8—C9	12.3 (2)	C21A—N4—C19—C20	133.9 (6)
N2—N1—C9—O1	-171.84 (16)	C16—N4—C21—C22	-93.5 (3)
C1—N1—C9—O1	-24.5 (2)	C19—N4—C21—C22	86.6 (3)
N2—N1—C9—C8	6.62 (17)	C21A—N4—C21—C22	2.0 (8)
C1—N1—C9—C8	153.96 (14)	C16—N4—C21A—C22A	110.9 (11)
C7—C8—C9—O1	176.07 (18)	C21—N4—C21A—C22A	0.5 (10)
N3—C8—C9—O1	-0.4 (3)	C19—N4—C21A—C22A	-112.3 (11)
C7—C8—C9—N1	-2.22 (18)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the 1	N1/N2/C7/C8/C9 and C	C1–C6 rings, respe	ectively.	
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2A···N3	0.82	1.88	2.6127 (17)	148
C12—H12…O1	0.93	2.33	3.004 (2)	130
C2—H2···O2 ⁱ	0.93	2.48	3.267 (2)	142
C11—H11B…O1 ⁱⁱ	0.96	2.36	3.309 (2)	172
C4—H4····Cg2 ⁱⁱⁱ	0.93	2.89	3.746 (2)	153
C6—H6···Cg1 ^{iv}	0.93	2.78	3.559 (2)	142
Symmetry codes: (i) $x-1/2$, $y+1/2$, z ; (ii) x	, <i>y</i> -1, <i>z</i> ; (iii) <i>x</i> , - <i>y</i> , <i>z</i> +1/2;	(iv) -x+1, y, -z+3/2	2.	

Fig. 1

